Chapter 25 Thoracic Trauma

Chest Injuries (1 of 2)

• Directly responsible for more than ________% of all traumatic deaths (regardless of mechanism)
• Account for about 16,000 deaths per year in the United States
• Chest injuries are the __________________________ leading cause of trauma deaths each year.
• Most thoracic injuries (90% of blunt trauma and 70-85% of penetrating trauma) can be managed without __________________________.

Chest Injuries (2 of 2)

• Vital __________________________ are located in the chest
 ○ Heart, Great Vessels, Esophagus, Tracheobronchial Tree, & Lungs
• 25% of MVC deaths are due to thoracic trauma
 ○ __________________________ annually in US
• __________________________ injuries are common with chest trauma.

Classifications of Chest Injuries

• __________________________ injury
• Pulmonary injury
• __________________________ and great vessel injury
• Diaphragmatic injury
• __________________________

Classification of Mechanism of Injury

• __________________________ thoracic injuries
 – Forces distributed over a large area
 – __________________________
 – Compression
• __________________________ thoracic injuries
 – Forces are distributed over a small area.
 – Organs injured are usually those that lie along the path of the penetrating object

Injury Patterns

1
• __________________________
 • Pleural and pulmonary
 • Mediastinal
 • Diaphragmatic
 • Esophageal
2
• Penetrating cardiac trauma
 • __________________________ injury
 • Confined spaces
 • Shock wave
 • Thoracic __________________________
Anatomy of the Chest
- Skin
- Muscles
- Trachea
- Lungs
- Blood Vessels
 (area between the lungs)

Vascular Anatomy
- Aorta
- Carotid
- Subclavian
- Intercostal
 - Superior vena cava
 - Inferior vena cava
 - Subclavian
 - Internal jugular

Arteries
- Veins
 - Ventricles
 - Atria
 - Valves
 - Pericardium

Mediastinum Anatomy
- Trachea
- Vena cavae
- Pulmonary artery
- Esophagus
 nodes

Respiratory Physiology
- the mechanical process of moving air into and out of the lungs
- the exchange of oxygen and carbon dioxide between the outside atmosphere and the cells of the body

Impairments in Cardiac Output
• __________________________ loss
• Increased __________________________ pressures
• Blood in the pericardial sac
• Myocardial __________________________ damage
• Vascular disruption

12 □ Impairments in Gas Exchange
• __________________________ (collapse of the alveoli)
• __________________________ lung tissue
• Disruption of the respiratory tract
 – Pneumothorax, hemothorax, airway obstruction, etc

13 □ Assessment of the Neck
• Position of __________________________
• Subcutaneous emphysema
• Jugular venous distention
• __________________________ wounds

14 □ Assessment of the Chest
• Contusions
• Tenderness
• __________________________
• Lung sounds
 – Absent or decreased
 – __________________________
 – Bilateral
 – Location
 – __________________________ sounds in thorax

15 □ Abnormal Percussion Finding
• __________________________
 – Hollow sound
 – Signifies presence of air
• __________________________
 – “Full” sound
 – Indicates the presence of fluid

16 □ Blunt Thoracic Trauma (1 of 2)
 (Compression)
• Body is compressed between an object and a hard surface
• Direct injury of chest wall and __________________________ structures
• Deceleration
• Body in motion strikes a fixed object
• Blunt trauma to chest wall
• __________________________ structures continue in motion
• Ligamentum Arteriosum shears __________________________
17 **Blunt Thoracic Trauma (2 of 2)**

Age Factors
- Pediatric Thorax: More ____________________________ = Absorbs forces
- Geriatric Thorax: Calcification & osteoporosis = More

18 **Penetrating Trauma**

Low Energy
- Arrows, knives, ____________________________
- Injury caused by direct contact and cavitation

High Energy
- ____________________________, hunting rifles & high powered hand guns
- Extensive injury due to high pressure cavitation

19 **General Management of Penetrating Chest Trauma**

- Use ____________________________ dressings
- Never remove an ____________________________ object unless it interferes with CPR
- Monitor EKG for all chest trauma
- Be prepared for massive ____________________________
- IV’s to maintain BP

20 **Impaled Object (1 of 2)**

21 **Impaled Object (2 of 2)**

22 **Injuries Associated with Penetrating Thoracic Trauma**

1. ____________________________ Pneumothorax
 - Open Pneumothorax
 - ____________________________ Pneumothorax
 - ____________________________
 - Hemopneumothorax
 - Great Vessel laceration
 - Tracheobronchial tree lacerations

2. ____________________________ lacerations
 - Penetrating cardiac injuries
 - Pericardial ____________________________
 - ____________________________ injuries
 - Diphragm Injuries
 - Intra-abdominal penetration with organ injuries

23 **Chest Wall Injuries**

24 Chest wall injuries are the most ____________________________ result of blunt injury
S/S of Chest Wall Injury
- Reddening due to capillary dilation
- Ecchymosis
- Pain on breathing
- Limited sounds
- Hypoventilation
- Biggest concern: “It hurts to breathe”
- Paradoxical chest wall motion

Clavicular Fractures (1 of 2)
- One of the most commonly fractured bones in the body
- Very common due to
 - Utilization of hand and arm to break a fall

Signs and symptoms:
- Pain
- Point
- Evident

Clavicular Fractures (2 of 2)
- Complications
 - Injury to the vein or artery from bony fragment penetration, producing a hematoma or venous thrombosis (rare)

Treatment:
- Usually accomplished with a and swathe or a clavicular strap that immobilizes the affected shoulder and arm
- Usually heals well within 4 to 6 weeks

Rib Fractures (1 of 3)
>50% of significant chest trauma cases due to blunt trauma
- forces flex and fracture ribs at weakest points
- Ribs 1-3 requires great force to fracture
 - Possible underlying lung injury

Rib Fractures (2 of 3)
- Ribs are most commonly fractured
- Ribs 9-12 less likely to be fractured
 - Transmit energy of trauma to internal organs
 - If fractured, suspect and spleen injury
- Hypoventilation is COMMON due to

Rib Fractures (3 of 3)
Multiple Rib Fractures

- Assessment findings
 - Localized pain
 - Pain that worsens with deep breathing, and coughing
 - Point tenderness
 - Most patients can localize the fracture by pointing to the area (confirmed by palpation).
 - __________ or audible crunch
 - __________ on respiration

Complications of Rib Fractures

- __________
- Atelectasis: (alveolar collapse) due to hypoventilation
- Inadequate cough
- __________
- Laceration of underlying structures

Rib Fractures Management

- Airway and ventilation
 - High-concentration oxygen
 - Positive-pressure ventilation
 - Encourage __________ and deep breathing
- Pharmacological
 - __________
- Nonpharmacological
 - Non-circumferential __________ (Sling/Swathe)

Flail Chest (1 of 4)

- Segment of the chest that becomes free to move with the pressure changes of respiration
 - __________ or more adjacent rib fracture in two or more places
 - Serious chest wall injury with underlying pulmonary injury
 - Reduces __________ of respiration
 - Adds to increased __________

Flail Chest (2 of 4)

- Can lead to respiratory failure due to:
 - Underlying pulmonary __________
 - The blunt force of the injury typically produces an underlying pulmonary contusion.
 - Associated intrathoracic injury
 - Inadequate __________ action of the chest

Flail Chest (3 of 4)

- __________ flail segment movement
 - Over time, the __________ splinting the flail segment will fatigue and paradoxical respiration will become more evident.
• Positive pressure ventilation can restore __________________________ volume

37 Flail Chest (4 of 4)

38 Flail Chest Assessment Findings
• Chest wall contusion
• Respiratory distress
• __________________________ chest wall movement
• Pleuritic chest pain
• __________________________
• Pain and splinting of affected side
• Tachypnea
• __________________________
• Possible bundle branch block on ECG

39 Paradoxical movement of the chest wall seen in flail chest

40 Paradoxical Motion

41 Flail Chest Morbidity/Mortality
• Significant chest trauma
• Mortality rates 20-40% due to associated injuries
• Mortality increased with:
 – Advanced __________________________
 – Seven or more rib fractures
 – __________________________ or more associated injuries
 – Shock
 – __________________________ injuries

42 Flail Chest Management (1 of 2)
• Airway and ventilation, oxygenation
• __________________________ -pressure ventilation may be needed.
 – Reverses the mechanism of paradoxical chest wall movement
 – Restores the __________________________ volume
 – Reduces the pain of chest wall movement
 – May promote the development of a __________________________ due to the increased pulmonic pressures

43 Flail Chest Management (2 of 2)
• Assess for the __________________________ of a pneumothorax/tension pneumothorax
• Evaluate the need for endotracheal intubation.
• __________________________ the flail segment (controversial).
• Establish IV, but restrict fluids if pulmonary contusion suspected
• Monitor ECG
• Consider __________________________ for pain
Sternum Fracture and Dislocation
- Associated with severe blunt trauma
- Typical MOI: Blow (i.e. Steering wheel)
- Incidence: 5-8%
- Mortality: 25-45%
- Myocardial contusion, Pericardial tamponade, Cardiac rupture, Pulmonary contusion
- Dislocation uncommon but same MOI as fracture
 - Depression if posterior

Sternal Fractures Management
- Airway, ventilation, oxygenation
- Circulation—restrict if pulmonary contusion suspected
- Pharmacological—analgesics
- Nonpharmacological—allow chest wall self-splinting
- Monitor ECG for

Pulmonary Injuries
Simple Pneumothorax
- AKA: Pneumothorax
- Occurs when lung tissue is disrupted and air leaks into the space
- Lung can eventually collapse and lead to hypoxemia
- May occur in the absence of rib fractures from a sudden increase in intrathoracic pressure generated when the chest wall is compressed against a closed glottis (the paper-bag effect)
- Can progress into Pneumothorax

Pneumothorax Pathology
- Air accumulates in pleural space, Lung collapse, reduced gas exchange
- Alveoli collapse, reduced gas exchange
- Ventilation/Perfusion Mismatch
 - Increased ventilation but no alveolar perfusion
 - Reduced respiratory efficiency results in
- Typical MOI: Rib fractures, penetrating trauma or “Paper Bag Syndrome”

Simple (Closed) Pneumothorax

S/S of Closed Pneumothorax (1 of 2)
- Tachycardia
- Respiratory distress
- Absent or decreased breath sounds on the affected side
- Upon percussion

S/S of Closed Pneumothorax (2 of 2)
• Decreased chest movement
• Dyspnea
• Chest pain referred to the shoulder or arm on the affected side
• Slight chest pain

Closed Pneumothorax Management (1 of 2)
- Airway and ventilation
- High-concentration .
- Positive-pressure ventilation if necessary.
- If respiration rate is <________ or >________ per minute, ventilatory assistance with a bag-valve mask may be indicated.

Closed Pneumothorax Management (2 of 2)
- Needle if S/S of tension pneumothorax
- IV, restrict unless needed for volume replacement
- Monitor ECG

Open Pneumothorax (1 of 3)
- AKA: Chest Wound
- Free passage of air between atmosphere and pleural space
- Air replaces lung tissue
- ________ shifts to uninjured side
- Severity is directly proportional to the size of the wound.
 - Profound can result.
 - Death is related to delayed management.
- Air will be drawn through wound if wound is __________ diameter of the trachea or large

Open Pneumothorax (2 of 3)
- If the chest wound opening is greater than two-thirds the diameter of the trachea, air follows the path of least resistance through the chest wall with each .
- As the air accumulates in the pleural space, the lung on the injured side ________ and begins to shift toward the uninjured side.

Open Pneumothorax (3 of 3)
- Very little air enters the tracheobronchial tree to be exchanged with intrapulmonary air on the affected side, which results in alveolar ventilation and decreased perfusion.
- The normal side also is adversely affected because expired air may enter the lung on the collapsed side, only to be ________ into the functioning lung with the next ventilation.
- May result in severe ventilatory dysfunction, hypoxemia, and death unless rapidly recognized and .
Open Pneumothorax

S/S of an Open Pneumothorax
- Penetrating chest trauma
- Sucking chest wound
- ____________ blood at wound site
- Severe ____________
- Subcutaneous emphysema
- Decreased lung sounds on affected side

Open Pneumothorax Management (1 of 3)
- Airway and ventilation
- High-concentration oxygen.
- Positive-pressure ventilation, if necessary.
- Assist ventilations with a bag-valve device and ____________ as necessary.
- Monitor for the development of a tension pneumothorax.
- Circulation—treat for ____________ with crystalloid infusion.

Open Pneumothorax Management (2 of 3)
- ____________ the open wound—apply an occlusive petroleum gauze dressing (covered with sterile dressings) and secure it with tape.

Open Pneumothorax Management (3 of 3)
- IV, watch for ____________ edema
- Monitor ____________
- If tension pneumothorax occurs, relieve pressure by ____________ removing a portion of the occlusive dressing

Tension Pneumothorax (1 of 2)
- Buildup of air under pressure in the thorax due to a flap formation at tear
- Excessive ____________ reduces effectiveness of respiration
- Air is unable to escape from inside the pleural space
- Progression of Simple or Open Pneumothorax
- ____________ Life Threat

Tension Pneumothorax (2 of 2)

S/S of Tension Pneumothorax (1 of 3)
- Extreme ____________
- Cyanosis
- Increasing ____________
Difficult ventilations while being assisted
• Tracheal deviation (a late sign)
• ____________________________________

S/S of Tension Pneumothorax (2 of 3)
• Tachycardia
• Diminished or absent breath sounds on the ___________________________ side
• ____________________________________
• Respiratory distress

S/S of Tension Pneumothorax (3 of 3)
• ____________________________________ of the intercostal muscles
• Subcutaneous emphysema
• Jugular venous distention (unless hypovolemic)
• ____________________________________ expansion of the chest (tension does not fall with respiration)
• Hyperresonance to ____________________________________

Subcutaneous Emphysema

Management of Tension Pneumothorax (1 of 2)
• Maintain airway, ventilations, and oxygenation
• Confirmation is the most critical aspect
 – Dyspnea
 – _____________________________ : absent or decreased
 – Percussion: hollow sounding
 – Tracheal shift: ___________________________ from injured side
• Pleural Decompression

Management of Tension Pneumothorax (1 of 2)
• _____________________________ open wound
• Needle thoracostomy (pleural _____________________________)
• _____________________________ thoracostomy—in-hospital management
• IV
• Monitor ECG

Pleural Decompression (1 of 2)
• ___________nd or ___________rd intercostal space in mid-clavicular line or mid axillary line (check protocols)
• ___________________________ OF RIB
• Consider multiple decompression sites if patient remains symptomatic
• Large 2” over the needle catheter: 14 or 16ga
• Create a one-way-valve: Glove tip or Heimlich valve (refer to protocols)

Pleural Decompression (2 of 2)
Hemothorax (1 of 2)
• Accumulation of ____________________________ in the pleural space
• Serious hemorrhage may accumulate 1,500 mL of blood
 – Each side of thorax may hold up to 3,000 mL
• Blood loss in thorax causes a ____________________________ in tidal volume
 – Ventilation/Perfusion Mismatch & Shock
• Typically accompanies ____________________________ called a hemopneumothorax

Hemothorax (2 of 2)
• Caused by blunt or penetrating trauma.
 • ____________________________ fractures are frequent cause.
• Associated with great vessel or ____________________________ injury
• Mortality rate of __________%
 – 50% of these patients will die immediately.
 – 25% of these patients live 5 to 10 minutes.
 – 25% of these patients may live 30 minutes or longer.

S/S of a Hemothorax (1 of 2)
• Blunt or penetrating chest trauma
• Shock
• ____________________________________
• ____________________________________
• Tachypnea
• ____________________________________
• Hypotension
• Pale, cool, moist skin

S/S of a Hemothorax (2 of 2)
• Diminished or ____________________________ breath sounds on the affected side
• Hyporesonance (dullness on percussion) on the affected side
• Narrowed ____________________________ pressure
• Tracheal deviation ____________________________ the unaffected side (rare)

Hemothorax Physical Findings

Management of Hemothorax
• Airway, ventilation, oxygenation
 – Ventilatory support with bag-valve mask, intubation, or both
• Administer volume-expanding fluids to correct hypovolemia
 – 2 large bore IVs to maintain SBP @ __________ - __________
• EVALUATE ____________________________ SOUNDS for fluid overload
• Monitor ECG
Hemothorax

Hemopneumothorax
- Pneumothorax with __________________________ in the pleural space
- Assessment findings and management are the same as for __________________________.

Pulmonary Contusion (1 of 2)
- The most __________________________ potentially lethal chest injury
 - Mortality—between 14% and 20%
- Soft tissue __________________________ of the lung
- 30-75% of patients with significant blunt chest trauma
- Frequently associated with __________________________ fracture

Pulmonary Contusion (2 of 2)
- Typical MOI
 - __________________________: Chest impact on steering wheel
- Microhemorrhage may account for 1- 1 ½ L of blood loss in alveolar tissue
 - Progressive deterioration of ventilatory status
- May be __________________________ due to the high incidence of other associated injuries

Signs and Symptoms of Pulmonary Contusion
1. Blunt or penetrating chest trauma
 - Increasing dyspnea
 - Increasing crackles
 - Diminishing breath sounds
2. Cough
 - Signs and symptoms of shock
 - Tachypnea
 - Tachycardia

Management of Pulmonary Contusion
- Airway, ventilation, oxygenation
 - Positive-pressure ventilation, if
- Circulation—restrict IV fluids (use caution __________________________ fluids in hypovolemic patients).
- Monitor ECG

Cardiovascular Injuries

Myocardial Contusion (1 of 3)
- The most common cardiac injury after a blunt trauma to the chest
 - Occurs in 76% of patients with severe blunt chest trauma
• Atrium and Ventricle is commonly injured
• Injury may reduce strength of cardiac
 – Reduced cardiac output
• Disturbances due to irritability of damaged myocardial cells

86 Myocardial Contusion (2 of 3)
Progressive Problems will develop:
• Hemoperitoneum
• Myocardial necrosis
•
• CHF & or __________________________ shock

87 Myocardial Contusion (3 of 3)

88 S/S of Myocardial Contusion
• __________________________ of chest wall
• Tachycardia and/or __________________________ rhythm
• Retrosternal pain similar to MI
• Associated injuries
 - Rib/Sternal fractures
• Chest pain unrelieved by __________________________
 - May be relieved with rest
 - This is TRAUMA-related pain
 - Similar signs and symptoms of __________________________ chest pain

89 Management of Myocardial Contusion
• Airway, ventilation, __________________________
• IV access
• Monitor ECG
• Pharmacological
 – __________________________
 – __________________________

90 Myocardial Aneurysm or Rupture
• Occurs almost exclusively with extreme blunt thoracic trauma
• Secondary due to __________________________ resulting from MI
• Signs & Symptoms
 - Severe rib or sternal __________________________
 - Possible signs and symptoms of cardiac __________________________
 - If affects valves only: S/S of heart failure
 - Absence of vital signs

91 Traumatic Aneurysm or Aortic Rupture (1 of 2)
• Aorta most commonly injured in severe blunt or penetrating trauma
 - 85-95% mortality
• Typically patients will survive the initial injury insult
 -30% mortality in ____________ hrs
 -50% mortality in _____________ hrs
 -70% mortality in _________ week

92 □ Traumatic Aneurysm or Aortic Rupture (2 of 2)
 • Injury may be confined to areas of aorta ________________________________
 • Signs & Symptoms
 -Rapid deterioration of ________________________________
 -________________________ deficit between right and left upper or lower extremities

93 □ Pericardial Tamponade
 • Restriction to cardiac filling caused by blood or other fluid within the ____________
 • Occurs in <2% of all serious chest trauma
 -However, very high ________________________________
 • Results from tear in the coronary artery or penetration of ________________________________
 -Blood seeps into pericardium and is unable to escape
 -200-300 ml of blood can restrict effectiveness of cardiac contractions
 -Removing as little as _____________ ml can provide relief

94 □ S/S of Pericardial Tamponade (1 of 2)
 • Dyspnea
 • Possible cyanosis
 • __________________________ Triad
 – JVD
 – Distant heart ________________________________
 – Hypotension or narrowing pulse pressure
 • Weak, thready pulse
 • __________________________

95 □ S/S of Pericardial Tamponade (2 of 2)
 • __________________________ signs: decrease or absence of JVD during inspiration
 • __________________________ Paradoxus: Drop in SBP >10 mmHg during inspiration
 – Due to increase in CO2 levels during inspiration
 • ECG Changes

96 □ Pericardial Tamponade Physical Findings

97 □ Management of Pericardial Tamponade
 • Airway, ventilation, oxygenation
 • IV fluid _____________________________ to maintain BP
 • Rapid _____________________________
• Patient needs a ________________________________ (in-hospital management)

98 □ Other Cardiovascular Injuries (1 of 2)
• Rupture or laceration of:
 - Superior Vena Cava
 - ________________________________ Vena Cava
 - General Thoracic Vasculature
• Blood Localizing in ________________________________
• Compression of:
 - Great vessels
 - ________________________________
 - Esophagus

99 □ Other Cardiovascular Injuries (2 of 2)
• General Signs & Symptoms
 - Penetrating Trauma
 - ________________________________ & Shock
 - Hemothorax or ________________________________
• Treatment is airway, ventilation, oxygenation and fluid resuscitation as needed
• Monitor ECG

100 □ Other Thoracic Injuries

101 □ Traumatic Rupture or Perforation of the Diaphragm
• MOI
 - High pressure blunt chest trauma
 - ________________________________ trauma
• Most common in patients with ________________________________ chest injury
• Most often occurs on ________________________________ side
• Compression of the lung with reduced ventilation

102 □ S/S of Traumatic Rupture or Perforation of the Diaphragm
• Herniation of ________________________________ organs into thorax
 - Displacement of ________________________________
 - Abdomen may appear hollow
 - Bowel sounds may be noted in ________________________________
• Similar to tension pneumothorax
 - Dyspnea, Hypotension & ________________________________
 - Evaluate for other injuries

103 □ Diaphragmatic Rupture Management
• Airway, ventilation, oxygenation
 – Caution: positive pressure may ________________________________ the injury
• ________________________________ access
• Do not place patient in ________________________________ position

104 □ Traumatic Esophageal Rupture
• ____________________________________ complication of blunt thoracic trauma
• 30% mortality
• Contents in esophagus/stomach may move into mediastinum
 - Serious ________________________________ occurs
 - Chemical irritation
 - Damage to mediastinal structures
 - Air enters mediastinum
• Subcutaneous ________________________________ and penetrating trauma present

105 Management of Traumatic Esophageal Rupture
 • Determination is ________________________________ in pre-hospital setting
 • Management is to ________________________________ signs/symptoms
 • IV access
 • Monitor ECG

106 Tracheobronchial Injury
 • MOI
 - Blunt trauma
 - Penetrating trauma
 • ___________% of patients with injury die within 1 hr of injury
 • Disruption can occur ________________________________ in tracheobronchial tree

107 S/S of Tracheobronchial Injury
 • Dyspnea, cyanosis
 • ________________________________
 • Massive subcutaneous ________________________________
 • Suspect/Evaluate for other closed chest trauma

108 Management of Tracheobronchial Injury
 • ________________________________ therapy
 • Keep airway clear
 • Administer high flow O2
 • Consider ________________________________ if unable to maintain patent airway
 • Observe for development of tension pneumothorax and SQ

109 Traumatic Asphyxia
 • Results from severe ________________________________ forces applied to the thorax
 • An increase in intrathoracic pressure forces blood from the right side of the heart into the veins of the upper thorax, neck, and face.
 • ________________________________ veins engorge and capillaries rupture.

110 S/S of Traumatic Asphyxia
 • Head & Neck become engorged with ________________________________
 • Skin becomes deep red, purple, or blue
• NOT __________________________ RELATED
• JVD
• Hypotension results once the pressure is released.
• Hypoxemia, Shock
• Face and __________________________ swollen
• Bulging eyes with conjunctival hemorrhage

111 Traumatic Asphyxia

112 Management of Traumatic Asphyxia
• Airway, Ventilation, Oxygenation
• PPV with BVM to assure adequate ventilation
• __________________________ as needed
• 2 large bore IV’s to maintain BP
• If entrapment > 20 min with chest compression, consider 1mEq/kg of Sodium Bicarbonate for __________________________ syndrome

113 Assessment of the Thoracic Trauma Patient
• Scene Size-up
• Primary Assessment
• Rapid Scan
 – Observe for JVD, SQ Emphysema, Expansion
 – Palpate, Auscultate and __________________________
• Treat only life-threatening conditions on scene
• Begin __________________________ quickly
• Continue treatment en route
• __________________________

114 General Management of the Chest Injury Patient (1 of 2)
Ensure __________________________
• High flow O2 via NRB
• __________________________ if indicated; consider RSI
• Consider __________________________ ventilation
 -If minute volume less than 6,000 mL
 -BVM at a rate of __________________________
 -May be beneficial for chest contusion and rib fractures
 -Promotes oxygen perfusion of alveoli and prevents __________________________

115 General Management of the Chest Injury Patient (2 of 2)
• Anticipate __________________________ Compromise
• Shock Management
 -Fluid Boluses to maintain BP
• __________________________ dressings for penetrating wounds
• Monitor __________________________
• AUSCULATE! AUSCULATE! AUSCULATE!